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Judgment & forecasting

Judgmental (point) forecasting

Lawrence et al., 1985; 1986; Lawrence & Makridakis, 1989; Sanders, 1992; Makridakis et al., 1993;
Goodwin & Wright, 1993; 1994; ...

Judgmental adjustments of a statistical baseline

Willemain, 1989; 1991; Mathews & Diamantopoulos, 1990; Goodwin & Fildes, 1999; Goodwin,
2000; Fildes et al., 2009; Syntetos et al., 2009; Franses & Legerstee, 2009; ...

Judgmental probability forecasts and prediction intervals

Weinstein, 1982; Wright & Ayton, 1989; 1992; Onkal & Muradoglu, 1994; Eggleton, 1982; O’Connor
& Lawrence, 1992; ...

Improving judgmental forecasts: feedback, decomposition, combining, ...

Remus et al., 1996; Sanders, 1997; Goodwin & Fildes, 1999; Edmunson, 1990; Armstrong & Collopy,
1993; Lawrence et al., 1986; Blattberg & Hoch 1990; ...

Judgmental model selection
Bunn & Wright, 1991



Forecasting with judgment: an |Q test analogy

* Judgmental (point) forecasting
7
.
* Judgmental adjustments of a statistical baseline
(o]«
e Judgmental model selection
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Model selection in a FSS
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 What about judgment?

o This strategy is implied by the majority of the world-leading FSSs.

o However, an empirical investigation of how subjects perform in such
tasks is a research gap.
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Why do we expect to work?
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e Statistical approaches cannot ex-ante assess the out-of-sample forecasts.
» Forecasters can select a method based on the quality of the out-of-sample
forecasts.



Hypotheses

The Brain: Human Judgment = Judgmental Selection

The Computer: Forecasting System = Automatic Selection
based on Information Criteria

H1: Brain performs model selection differently than Computer.
H2: Brain is better in building models than selecting ones.

H3: Combination and aggregation will outperform both Brain
and Computer.



Laboratory experiment

Model Selection Model Build
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Each participant was randomly assigned in one of the two approaches and was asked
to provide selections for 32 time series, based on different types of information.



Participants

Role Model Selection Model Build Total
UG students 139 137 276
PG students 103 108 211 693
Researchers 13 31 44 — ..
o part|C|pants
Practitioners 46 44 90
Other 40 32 72
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Individual judgmental selections
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Selecting models judgmentally
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Overall, humans’ score is lower than statistics...

...while they select the ex-post best model less frequently.
However, they do succeed in avoiding the worst model.
How does this translate to forecasting performance?
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Forecasting performance overall
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* Interms of bias and MAPE, humans perform significantly better than AIC.

e Participants in the Model Build experiment are as good as statistics,
in terms of SMAPE or MASE.




Forecasting performance of practitioners
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e Practitioners on “model build” approach generally outperform the statistical

model selection.




50% statistics + 50% manager (siatberg & Hoch, 1990]
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50% statistics + 50% manager: results
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* The Blattberg-Hoch approach works for 86% of the cases for bias, 99% of
the cases for MAPE and sMAPE and for 90% of the cases for MASE.

* The differences in the performance between the two approaches (model
selection and model build) are also minimised.



Wisdom of crowds
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Wisdom of crowds: results
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e 20 experts: the forecasting performance of a grouped judgmental model
selection approach is significantly better than statistical model selection.

* How many experts are enough?



Wisdom of crowds: results (cont’d)
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Summary of results
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Conclusions

e Judgmental model selection is offered by every FSS, but its
performance has never been empirically evaluated before.

e Judgmental model selection and, especially, model build may
offer improvements over a statistical selection strategy.

 The improvements are more apparent when we focus on the
participants self-described as practitioners.

* Wisdom of crowd (grouped judgmental model selection) or a
50%-50% combination approach appear to be very promising.



To do... and extensions

 Wisdom of crowds & decision trees: automatically derive
optimal weights to emulate humans’ selection strategy.

* Next experiment: judgmental build of ETS
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* Next experiment: judgmental selection of model’s parameters



Questions?

PetropoulosF@-cardiff.ac.uk
http://fpetropoulos.eu
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