

Messy Environmental Decisions A Summary of BOR Challenges

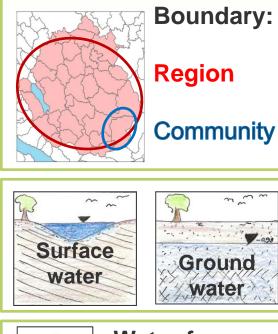
Judit Lienert, Fridolin Haag

EURO 2016 – 28th European Conference on Operational Research 03.-06.07.2016, Poznan, Poland Stream: Behavioral Operational Research

Eawag: Swiss Federal Institute of Aquatic Science and Technology

Why are environmental decisions «messy»?

- Often unclear cause-effect relationships
 → difficult to structure
- Different stakeholders with different interests
 → trade-offs, conflicts
- Expert knowledge required
 → many «indicators» (objectives); redundancy
 → difficult to understand for lay people
- Publicly financed
 - \rightarrow constraints (time, \$)
 - \rightarrow should satisfy many; generalization of results?
- Different types of uncertainty
 → future world, predictions, people's preferences?
- Often long-term effects; irreversible
 - \rightarrow interests of future generations?
 - \rightarrow stability of preferences over time?



1. Problem Structuring

BOR challenges...

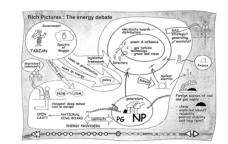
- ...apply to any MCDA
- \rightarrow how problem is structured strongly affects outcome of MCDA, including behavioral issues
- \rightarrow but starting point in MCDA is often wellstructured decision problem Belton & Stewart (2010) in: Ehrgott, et al., Springer
- Did we correctly characterize problem?
- Are system boundaries well-drawn?
- Whom to include or exclude? ... etc.
- \rightarrow Recommendation: integrate PSM with MCDA to avoid later Figure for behavioral problems

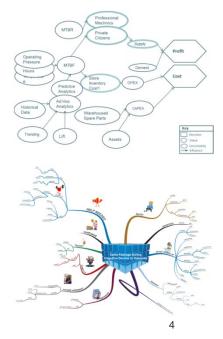
water infrastructure system adapted from Lisa Scholten

Water for: Drinking

 \rightarrow public health

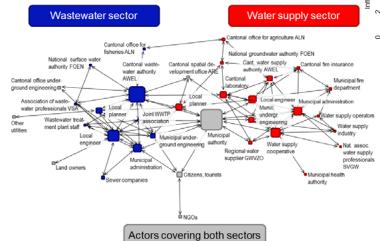
Household \rightarrow end users

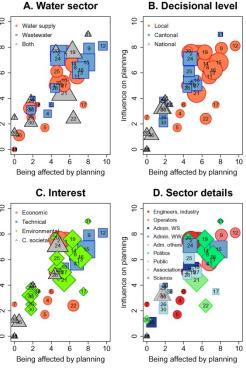

Firefighting \rightarrow insurance


1. Combine MCDA w. Problem Structuring Methods

M. Marttunen, V. Belton, J. Lienert (in prep.) → see talk by Valerie Belton

- Problem Structuring Methods (PSM): aim to structure problem situation (not solve it) Rosenhead & Mingers (2009) J. Wiley & Sons
- Early efforts for integration, e.g. Keeney (1992) Harvard Univ. Press; Belton et al. (1997) JMCDA: 6(3); Montibeller & Franco (2011) JORS: 62(5)
- Recent trend to combine PSM & MCDA, e.g.
 * SWOT & AHP/ANP: 105 papers
 * DPSIR & AHP/ANP: 39 papers
 * TOPSIS & MAVT/MAUT: 21 papers ...
 Review about pro's & con's of combinations: *M. Marttunen, J. Lienert, V. Belton (in prep.)*





1. Combine MCDA w. Problem Structuring Methods

Example stakeholder analysis; Lienert et al. (2013) JENVMAN: 125

- 27 interviews: 66 actors play a role in water infrastructure management case
- How to select those to interview?
- Stakeholder analysis: who is important for / affected by decision?
- Snowball & Stratified sampling: all sectors / decisional levels / interests
- Social network analysis: e.g. centrality concept (who connects between actors?)

2. Large objectives hierarchies

Environmental decisions are typically characterized by large hierarchies

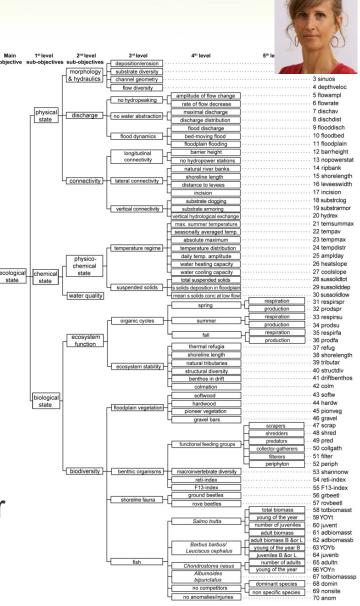
→ See talk by Mika Marttunen

Meta-analysis of 61 environmental /energy cases: 15 objectives on average (range 3–51) *M. Marttunen, V. Belton, J. Lienert (subm.)*

Why so many?

Various objectives in each pillar:

- Environment: Experts require specific indicators to measure e.g. "good ecological state"
- Socio-economic: Many actors with various / conflicting interests
- Equity: Interests of future generations?

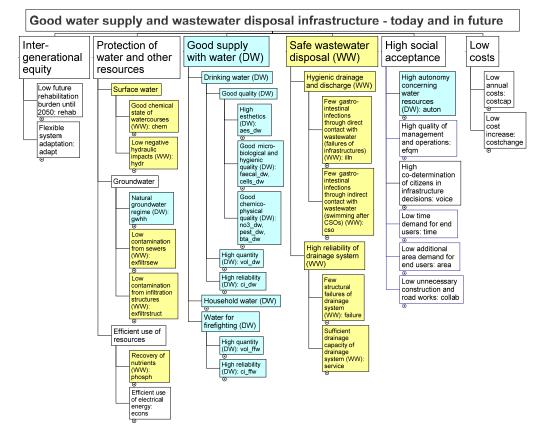

2. Large objectives hierarchies

Example river rehabilitation Langhans & Lienert (2016) PLoS ONE: 11(3)

- Interviews with 6 ecology experts
- 54–93 "essential" objectives
- No consensus; e.g. biology expert: "only" 54 biological objectives

Conclusions:

- To assess success of restoration, large hierarchy = advantage?
 - * Redundant attributes increase statistical power
 - * Flexibility: choose favorite indicator
 - * Allows to identify cause-effects
- Else: reduce objectives


2. Large objectives hierarchies

Example Sustainable Water Infrastructure Management (SWIP) Lienert et al. (2015) EJDP: 3(1–2); Scholten et al. (2016) EJOR: 242(1); Zheng et al. (accepted) JENVMAN

aquatic research 8000

- Based on expert knowledge, document analysis, 27 interviews, workshop
- 33 objectives
- Preference elicitation interviews required shortcuts (e.g. rough shape of marginal value function)

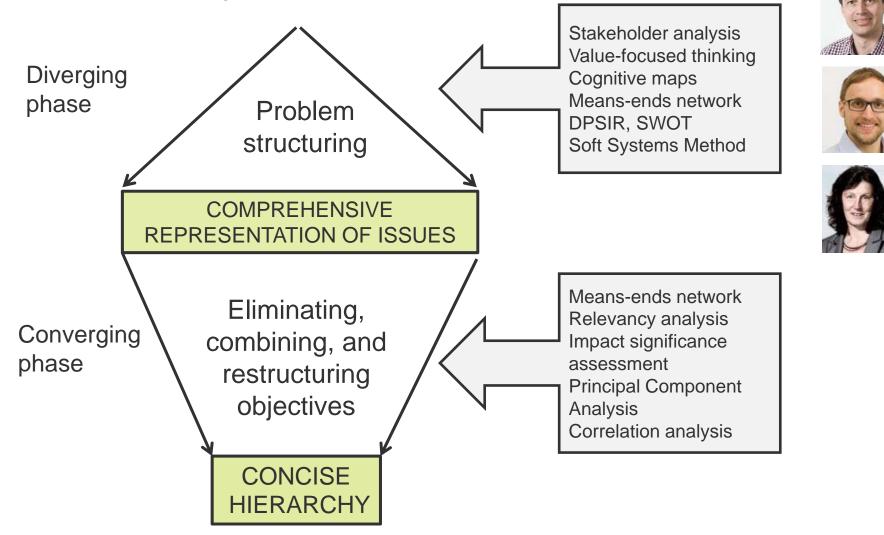
eawag aquatic research 8000

2. Reduce large objectives hierarchies BOR challenges

Benefits of more concise hierarchy:

- Lower risk of bias in weight elicitation
 - Important objectives are overridden;
 "nothing matters"-effect
 - Preference elicitation becomes less demanding (tiresome, loss of focus)
- Easier to process information
 - Hierarchy is easier to understand, decrease of cognitive load
- Facilitate interaction & communication
 Visibility of key issues & main trade-offs

But: Little guidance how to reduce objectives



Make hierarchies more concise in converging phase of building process

M. Marttunen, F. Haag, V. Belton, J. Lienert (in prep.)

eawag aguatic research 8000

2. Reduce large objectives hierarchies

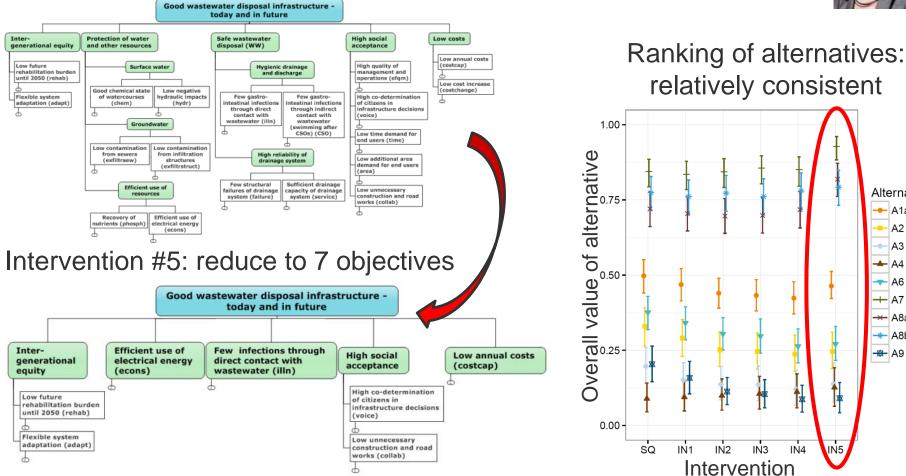
Promising methods to reduce hierarchies in size and complexity M. Marttunen, F. Haag, V. Belton, J. Lienert (in prep.)

Original SWIP hierarchy (for wastewater): 18 objectives

Alternative

🗕 A1a

A2


A3

📥 🗛 - A6

+ A7

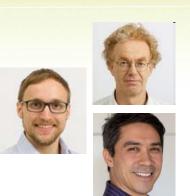
IN5

🗕 🗕 🗕 - A8b

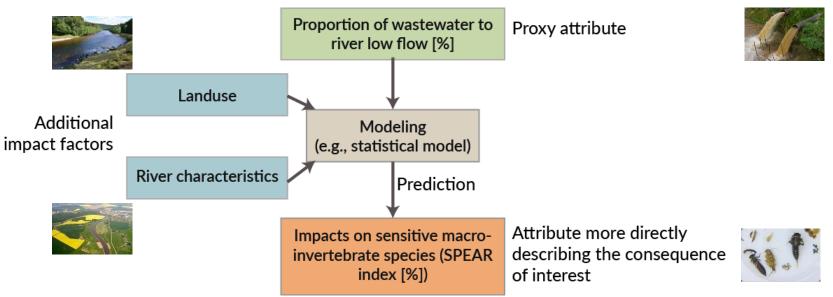
cawag aquatic research 8000

3. Problems of (expert) indicators BOR challenges

Ecological indicators (e.g. "good ecological state"): often proxy attributes & difficult to understand for lay people *example: Langhans & Lienert (2016) PLoS ONE: 11(3)*


- (How) can we avoid using proxys?
- Decision maker: mental model / heuristics relating proxy to objectives of interest
- How does attribute choice (proxy / direct) influence stated preferences?
- How do different representations of information influence stated preferences?
- Uncertainty of predictions?
- Often partially redundant attributes: Consider nonadditive MCDA models. But how to elicit?

3. Problems of (expert) indicators


Avoid proxys: Predict decision relevant impacts F. Haag, J. Lienert, M. Maurer, P. Reichert (in prep.)

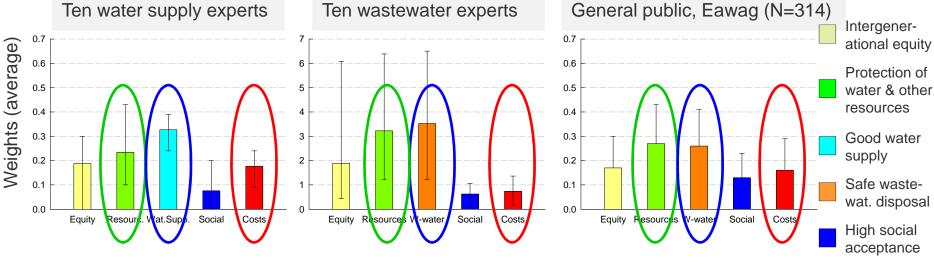
Instead of trying to...

aquatic research O 000

- ... make predictions "understandable": try to directly predict impacts of interest
- ... find better proxy: try to quantitatively relate proxy to more direct attribute

4. Publicly financed; restrictions (time, money) BOR challenges

- Aim: include public preferences & wish that decision result satisfies many
- But restrictions: risk of over-simplification
- Online surveys to include public preferences? Criticized by e.g. Marttunen & Hämäläinen (2008) Environm. Managem: 42
- Serious games? → see talk by Alice Aubert



4. Publicly financed; restrictions

Example sustainable water infrastructure planning (SWIP) Lienert et al. (2016) EJOR: 253(3)

- Face-to-face interviews vs. online elicitation
 Low costs
 (SWING / SMART/SWING-variant) → Same weight patterns
- But: SWING perceived as "easier"
- But: Statistically significantly different weights
 SMART/SWING-variant: larger spread of weights ... and
 - $\circ\,\ldots$ less stable preferences after one month

aquatic research

4. Publicly financed; restrictions (time, money) BOR challenges

- Compare preference elicitation methods (swing, trade-off, ...) & elicitation procedures (interview, groups, games,...)
- Psychological mechanisms & other reasons for (systematic?) differences?
- Influence of decision context, information modes, knowledge, difficulty of task, learning processes,...?

How?

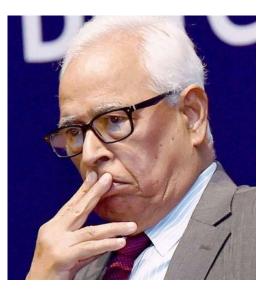
- Experiments (surveys, decision labs)
- Observational studies

5. Uncertainties

Environmental decisions are full of uncertainty!

Lienert et al. (2015) EJDP: 3(1–2); Reichert et al. (2015) JENVMAN: 154; Scholten et al. (2016) EJOR: 242(1); Zheng et al. (acc.) JENVMAN

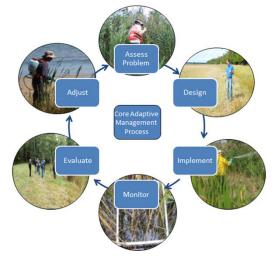
- Uncertain predictions
 - \rightarrow Monte Carlo simulation
 - → Represent scientific knowledge with intersubjective (imprecise) probabilities
- Uncertain preferences (sure outcomes)
 → Allow for uncertainty during elicitation
- Preferences for uncertain outcomes
 → Elicit utility function
- Which uncertainties matter?
 → local/ global sensitivity analyses
- Uncertainty of future world
 → combine MCDA with scenario planning

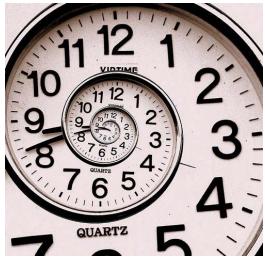


5. Uncertainties

BOR challenges

- How to reduce effort for preference elicitation in practice?
 → A priori sensitivity analysis?
 → Interactive elicitation; following idea of:
 - de Almeida et al. (2016) EJOR: 250
- How to communicate uncertainties in such a way that they are understood by lay people? Mental models / heuristics?
- How to elicit utility functions (lotteries) in practice without distorting utility function? To date mostly "academic" examples
- Do preferences change across future scenarios? Elicit preferences for each?





6. Timing aspects BOR challenges

- Desirable that environmental decisions are stable over time and persist beyond a single situation Gregory et al. (2012) Structured decision making, Wiley-Blackwell, p. 210 (especially if they affect long time ranges)
- But: are preferences stable over time?
- What influences preferences stability over time? Differences between elicitation methods? *Lienert et al. (2016) EJOR: 253(3)*
- How are preferences formed over time?
- → BOR-aspects: of decision making over time, timing strategies, adaptive management... *new PhD Philipp Beutler*

Conclusions: Environmental decisions & BOR

Perspective of decision analyst (to avoid or overcome behavioral problems):

- Integrating problem structuring & MCDA
- Systematic (sound) reduction of objectives
- Developing attributes "that matter"

Perspective of decision makers / lay people:

- Mental models, preference formation, heuristics, biases, ... given highly complex / uncertain issue
- Procedures that best support unbiased, stable real-world decision-making?
- Including public preferences in policy decisions?

Work in progress exemplifies different types of behavioral issues \rightarrow suitable research approaches need to be discussed!

www.eawag.ch/en/department/ess/empirical-focus/decision-analysis-da/