

Are objectives hierarchy related biases observed in practice?

A meta-analysis of environmental and energy applications of Multi-Criteria Decision Analysis

Mika Marttunen, Valerie Belton*, Judit Lienert

Swiss Federal Institute of Aquatic Science and Technology, Eawag University of Strathclyde*

28th European Conference of Operational Research Poznan 3.7.-6.7.2016

Research on behavioural and procedural biases in MCDA

- Imbalance between the importance of the objectives hierarchy and the amount of research.
- Most studies carried out 15-30 years ago with students in hypothetical decision situations.
- Are findings of prior studies replicated in real-world applications?

Possible biases and factors affecting weights

- The splitting bias
- Range insensitivity bias
- Equalising bias
- Weighting method (e.g. swing, tradeoff, AHP)
- Weighting technique (hierarchical or non-hierarchical)
- Location of the objective
- Number of objectives/sub-objectives
- Type of objective/attribute

Research questions

- RQ1: How do the size and structure of an objectives hierarchy affect the weights of objectives?
- RQ2: How are weights distributed across economic and environmental objectives?
- RQ3: Is there support for the equalising bias?

Meta-analysis & material

- Widely used in social and medical science, ecology and economics
- Efficient method to combine and analyse large amount of information
- Not used in MCDA to analyse weight distributions of objectives
 => Methodological objective: examine benefits and limitations
- 61 environmental and energy MCDA cases
- 230 weight schemes
 - Weights assigned by a stakeholder or an average over stakeholders

Large variety in the cases

- 25 countries
 - Switzerland, USA and Finland
- Application areas
 - Water resources (22 cases)
 - Energy planning (15)
 - Forestry (4)
- Methods to gather preferences
 - Interviews (26)
 - Questionnaires (17)
 - Workshops (16)
- MCDA methods
 - MAVT (24)
 - AHP (20)
 - PROMETHEE (6)

- Who gave weights?
 - Stakeholders (33)
 - Experts (17)
 - Policy makers or decision makers (3)

Hierarchy terminology

Global weight: the local weight of the objective is multiplied with the local weights of its parental objectives.

Great diversity in the objectives hierarchies

- Number of lowest-level objectives (LLOs)
 - Minimum 3, maximum 51
- Number of hierarchy levels
 - Minimum 1, maximum 5

RQ1: How does the size and structure of an objectives hierarchy affect the weights of objectives?

Three analyses:

- 1. Highest weights of the lowest-level objectives
- 2. Percentage of objectives getting very low weight
- 3. Effect of the asymmetry of the hierarchy

RQ1 (1/3): The number of lowest-level objectives vs. their highest global weights

r_s=-0.512, p<0.001, n=230

RQ1 (2/3): Percentage of the lowest level objectives $getting very^{\cdots}$ low global weight (≤ 0.05)

> 15 lowest-level objectives 71% (n=51 weight schemes)

RQ1 (3/3): Effect of the asymmetry of the hierarchy: comparison of mean weights in the smallest and largest hierarchy branch

• The mean weight was higher in the smallest branch than in the largest branch, 71% weight schemes (n=103)

• In 85% of the weight schemes, the lowest-level objective receiving the highest global weight was in the smallest branch (n=65).

eawag aquatic research 8000

RQ2: How are weights distributed across economic and environmental objectives?

- In 77% of the incidents environmental objective had higher weight
- Environmental objectives: mean 0.38 (n=124)
- Economic objectives: mean 0.22

RQ3: Is there support for the equalising bias? (e.g. Montibeller and von Winterfeldt 2015)

- The comparison of the highest and lowest weights of the main objectives
 - «Average weight cases» were excluded
 - The mean of the highest weights 0.43 (n=96)
 - The mean of the lowest weights 0.15

r_s=0.20, p<0.056, n=96

Conclusions

- Earlier findings supported
 - Hierarchy affects weights in many ways
- Asymmetry bias a new bias in the MCDA field?
- Equalising bias not supported.
- No means to determine whether the given weights reflect participant's opinions.
- Recommendations regarding objectives hierarchy and weight elicitation.

- Meta-analysis
 - "Bird's-eye view"
 - Testing and formulating conjectures.
 - Heteregoneous cases.
 - MCDA applications provide good opportunities for further analyses.
 - Better documentation of weight elicitation procedures.

THANK YOU!

mika.marttunen@eawag.ch

EXTRA SLIDES

Hypotheses

Lowest weight lower than in hierarchy 1

Highest weight higher than in hierarchy 1

Data collected from the selected articles

Type of information	Characteristics		
General	Authors; Year; Country of application; Country of first author; Application area		
Structure of the	Number of main objectives; Number of hierarchy levels; Number of hierarchy		
objectives hierarchy	branches at the top level of the hierarchy; Number of lowest-level objectives		
Number of objectives	Economic, Technical, Socio-economic, Social, Environmental, Risks, Other		
	objectives		
Costs in the hierarchy	Main objective (either divided or not divided into sub-objectives); Sub-		
	objectives of the economic objective; Not included in the analysis		
Weight elicitation	Bottom-up; Top-down; Hierarchical weighting; Non-hierarchical weighting;		
method	Unclear		
Source of preferences	Decision makers; Policy makers; Experts; Students; Hypothetical, Authors,		
	Unclear		
Method to collect prefences	Questionnaire or Survey; Workshop; Interviews, Literature, Unclear		
Presentation of	Individually; Group mean; Mean across all participants; Number of weight		
objectives' weights	profiles		

Characteristics of the objectives hierarchies (n=61)

	Mean	Standard	Minimum	Maximum
	Weall	deviation	winning	Waximum
Number of top level objectives	4.7	3.1	2	18
Number of lowest-level				
objectives	14.6	8.2	3	51
Total number of objectives	19.3	11.4	4	73
Number of hierarchy levels	2.3	0.9	1	5
Number of lowest-level economic				
objectives (n=51)	3.1	2.4	0	10
Number of lowest-level social				
objectives (n=39)	3.8	2.8	0	17
Number of lowest-level				
environmental objectives (n=56)	5.7	7.3	1	51

RQ2: How are weights distributed across economicered social and environmental objectives?

Analysis 2b: Comparison of weights of social and economic objectives (n=124)

The difference in the mean weights was statistically significant (Related-Samples Sign Test, Z=28, p<0.001, n=96).

"The asymmetry bias"

- Occurs in cases where a hierarchy consists of branches that have a different number of sub-objectives.
- Similarities with the splitting bias but is opposite and occurs only in the hierarchical weighting procedure.
- The phenomenon has received little attention in the MCDA literature.
- Assigning weights taking into account both the number of sub-objectives and their ranges is very demanding.

Example: Assume that all sub-objectives are globally of equal importance. They should thus each receive a global weight of 1/10 (0.1).

To give the intended global weights to the subobjectives, the objective C should receive a 2.5 times higher weight than the objective A.