"SMART" Cities: Prosocial Multi Criteria Public Housing Assignment Motivated by Neurobehavioral Simulation

Gordon H Dash^a Nina Kajiji^b S. Tiffany Donaldson^c

^a College of Business Administration, University of Rhode Island ^aInterdisciplinary Neuroscience Program, University of Rhode Island

^b Computer Science and Statistics, University of Rhode Island

^c Development and Brain Sciences, Department of Psychology, University of Massachusetts Boston

EMAILS: ghdash@uri.edu, nina@uri.edu , tiffany.donaldson@umb.edu

For Presentation at the: I F O R S 2017, Quebec City, Canada (July 17-21, 2017)

Research was funded by a grant from: National Institute of Minority Health and Health Disparities (NIMHD) P20MD002290

Additional support provided by: •The NKD Group, Inc., USA •University of Rhode Island

Research Objective

- Contribution: Develop an interdisciplinary translational model
 To link neurobehavioral science and multiobjective optimization
- Plan:
 - Introduce an economic theory of "SMART City" prosocial public housing behavior.
 - Conduct an in-vivo experiment on 4th generation trait-bred male and female Long Evans rats living in alternate housing conditions to obtain, physiological, behavioral and emotional responses when exposed to severe stress via a dose of amphetamine (AMPH).
 - Translate the findings to a human model and obtain per capita social indicator scores (SIS).
 - Parameterize a multiple objective MCDM for prosocial public housing apartment assignment

Architectural Design: "Smart City"

Top 10 "SMART Cities"...?

A city migrates to 'smart' status

Optimizes resource allocation toSupport a sustainable prosocialQuality OfficeLondonInformationInformationInformationScherinCopenhagenCopenhagenInformationInformationScherin<td

-top-10-smart-cities-on-the-planet

Residential Environment Objectives

- Residential Objectives: To achieve Prosocial behavior
- Definition: Prosocial behavior is the voluntary action and resulting consequences when individuals help other individuals or groups of individuals.

Examples Include:

- sharing,
- comforting,
- rescuing,
- helping.

Antithesis: The 21st century

- antisocial behavior in government subsidized public housing is high
- no sign of abatement.

"SMART City": Architectural Assumptions

IFORS-2017: 5 / 30

All eligible persons have an identical preference function:

$$u(s, z, E) = s^{\alpha} z^{1-\alpha} E^{-\beta} ; 0 < \alpha < 1; \beta > 0$$

With a budget constraint:

w = z + rs + td

Where:

s: utility of a desired increase in housing WRT to z
z: non-housing basket of goods
E: city-wide antisocial behavior
w: wage income
r: rent per unit
t: cost of travel WRT to d
d: distance to CBD (*Central Business District*)

General Equilibrium conditions

The two equilibrium conditions for the city-wide apartment assignment model are:

$$r(w-t\overline{d}, E, v) = r_A$$

where r_A is the Ricardian land rent, and

$$\int_0^{\bar{x}} \frac{1}{s(w-td,E,v)} \, dx = n,$$

where *n* fills available

apartment units between 0 and \bar{x}

 $\bar{x} = \frac{n^{\gamma} [1 - r_A^{\alpha} (r_A + tn)^{-\alpha}]}{t} \text{ as } n^{\uparrow}, \text{ vacant units } \bar{x} \text{ are filled}$ $v = n^{\gamma} (r_A + tn)^{-\alpha} E^{-\beta} \text{ the agglomeration effect}$

Antisocial Behavior Spillover in Public Housing

Antisocial behavior in building i is given by:

$$E_i = e(n_i) + \delta \sum_{j=1}^{m-1} e(n_j)$$

Where:

e: is baseline (reference) antisocial behavior for a building

•
$$\delta = \begin{cases} 0 \\ 0 < \delta < 1 \\ 1 \end{cases}$$

antisocial behavior restricted to a building

degree of antisocial spillovers emanating from residents assigned to aprtments in this building

antisocial behavior is globally endemic to all bldgs

Optimal Prosocial Behavior for a Building

- Proposition 1: δ = 0. If antisocial behavior is localized and overall building antisocial behavior is measured by how percapita antisocial behavior changes with a change in the assigned eligible population then, in equilibrium, the building is over- or under-populated
- Proposition 2: δ = 1. If eligible resident antisocial behavior increase with n, then city-wide public housing density is beyond established occupancy guidelines or ineligible residents are providing covinous housing. However, if per capita antisocial behavior decreases with a change of n, then building density may either be too small or too large in equilibrium.

The model provides an optimizing function for city-wide prosocial public housing assignment.

Equilibrium Condition for Prosocial Building

Antisocial behavior and migration defined in terms of a utility differential:

$$v(n_i) - v(n_j) = v(n_i) e(n_i)^{-\beta} - \hat{v}(n_j) e(n_j)^{-\beta}$$

The New Frontier for Machine Translation: The Neural Frontier

https://www.gala-global.org/conference/annual-conference-2017-amsterdam/new-frontier-machine-translationneural-frontier

Elevated Plus Maze

Open-field Test

Animal Husbandry

IFORS-2017:12 / 30

Physiological and Behavioral Analysis

Histology

Expression of *c-fos* by individual neurons can be used as a marker of cell activation in neuroendocrine systems. *c-fos* cells were counted in the left- and right- side of the following seven (7) brain regions:

Brain Region	Implicated by:
Periaqueductal Gray (PAG)	Stimulant drugs and social stress
Amygdala (Amy)	Fear / Anxiety (Flight or Fight)
Ventromedial hypothalmus (VMH)	Fear / Anxiety (Defensive Emotion)
Cingulate gyrus 1 (Cg1) & Cingulate gyrus 2 (Cg2)	Cognitive control of emotions
Nucleus accumbens core (NAc(c)) & shell (NAc(sh))	Fear / Reward

IFORS-2017:14 / 30

- Analytical methods use the data from the Open Field Novel Stress Test (OFST).
- The OFST experimental design:
 - **Fixed inputs (predictors)** are: SEX, TRAIT, ENVIRONMENT
 - Response variables (targets or dependents) are: average c-fos level from left- and right- side of each of the 7 brain regions.
 - ➤ # of observations = 32
- Analytical Procedure
 - Mean, Standard deviation, and intercorrelations
 - Solution Exploratory factor analysis (PCA \rightarrow Varimax)
 - Comparative analytics: 7 MANOVA models and 7 MRANN models
 - MRANN multivariate radial basis function artificial neural network

Descriptive Statistics – Mean & STD

	PagL	PagR	AmyL	AmyR	Cg1L	Cg1R	Cg2L	Cg2R	NAc(c)L	NAc(c)R	NAc(Sh)L	NAc(Sh)R	VMHL	VMHR
Female														
LAn IE	11.75	13.33	9.42	10.17	9.75	9.08	9.75	9.34	9.75	9.08	9.75	9.34	9.08	6.00
	1.29	4.12	7.65	8.31	3.01	1.66	3.89	5.10	3.01	1.66	3.89	5.10	6.38	2.45
LAn SE	16.42	22.00	8.33	11.00	12.59	10.67	11.59	10.42	12.59	10.67	10.42	10.42	10.75	5.75
	4.14	5.59	6.70	8.04	2.36	2.60	2.46	3.36	2.36	2.60	3.36	3.36	8.21	4.92
HAn IE	13.42	15.00	12.42	11.08	7.92	6.83	7.25	8.00	7.92	6.83	7.25	8.00	14.09	15.25
	8.33	9.76	7.55	8.85	1.69	2.73	1.97	3.23	1.69	2.73	1.97	3.23	2.53	4.03
HAn SE	14.33	17.58	8.58	7.50	10.75	7.92	7.08	13.17	10.75	7.92	7.08	13.17	7.58	8.50
	3.89	5.07	2.13	2.12	6.60	3.63	1.20	15.59	6.60	3.63	1.20	15.59	3.83	3.87
Male														
LAn IE	14.83	15.92	17.17										10.00	11.08
	7.04	4.58	_ FII	ndin	gs (d	c-fos	for	Fem	ale Gr	oup):			8.66	7.88
LAn SE	10.67	13.17	a)	ΗA	n IE	gro	up s	show	v high	er emo	otional	fear	12.17	8.25
	0.86	3.13		(pa	anic) (Ar	nv 8	k VN	1H):				10.46	1.60
HAn IE	10.25	9.50	6			aro	un c	show	, high	moon	c foc l	ovols	8.34	9.08
	3.86	4.24	D)	b) LANSE group show high mean C-Jos levels										2.47
HAn SE	12.08	15.92		in A	ALL I	braii	n re	gion	IS				6.58	8.67
	2.42	6.79	5.85	6.25	7.33	5.31	7.38	19.06	18.63	15.44	15.34	17.94	2.76	1.25

Note: Higher the mean value deeper the red color; lower the mean value darker the green color; Standard deviations are presented as unshaded values; bold = STD > 10.0

Descriptive Statistics – Mean & STD

	PagL	Page Findings (Male Group):								VMHL	VMHR			
Female			a) HAn SE group shows an across the board effect											
LAn IE	11.75	13.3	, of	incr	625	b ha	roc	c (ur	liko tł	no For	ale gro) (au	9.08	6.00
	1.29	4	、 · · ·	inici	<i>cas</i>		-	s (ui	inke ti	ie i en	iaic gro	Jup)	6.38	2.45
LAn SE	16.42	₂₂ b) HA	n ar	nd L	An I	E gr	oup	s shov	v a cor	isidera	ble	10.75	5.75
	4.14		rea	actio	n to	o fea	r/a	nxiet	ty (ag	gressio	on) and	1	8.21	4.92
HAn IE	13.42	1	еm	otio	n (L	1mv	Co	1 &	$(\sigma 2)$				14.09	15.25
	8.33		CIII	0110	11 (7	, , , , , , , , , , , , , , , , , , , 	Cg.		Cg21				2.53	4.03
HAn SE	14.33	17.58	8.58	7.50	10.75	7.92	7.08	13.17	10.75	7.92	7.08	13.17	7.58	8.50
	3.89	5.07	2.13	2.12	6.60	3.63	1.20	15.59	6.60	3.63	1.20	15.59	3.83	3.87
Male														
LAn IE	14.83	15.92	17.17	20.58	24.00	12.59	10.25	13.58	6.75	11.42	10.17	8.75	10.00	11.08
	7.04	4.58	6.89	4.63	8.74	1.26	2.28	5.07	0.83	2.32	3.25	3.76	8.66	7.88
LAn SE	10.67	13.17	15.00	14.25	11.33	7.67	8.58	7.75	8.33	9.42	8.42	9.50	12.17	8.25
	0.86	3.13	6.81	4.58	4.74	1.96	2.64	2.75	0.67	3.01	2.54	4.99	10.46	1.60
HAn IE	10.25	9.50	19.83	18.17	11.17	12.92	11.25	12.58	7.67	10.42	7.33	11.34	8.34	9.08
	3.86	4.24	8.40	5.56	2.38	4.59	5.88	6.99	3.39	9.18	2.79	6.42	5.13	2.47
HAn SE	12.08	15.92	16.25	13.17	13.92	10.83	11.75	19.42	18.33	13.25	15.00	17.67	6.58	8.67
	2.42	6.79	5.85	6.25	7.33	5.31	7.38	19.06	18.63	15.44	15.34	17.94	2.76	1.25

Note: Higher the mean value deeper the red color; lower the mean value darker the green color; Standard deviations are presented as unshaded values; bold = STD > 10.0

Exploratory Factor Analysis with Varimax Rotation

	Fear / Reward Emotional Circuit	Fear / Anxiety Emotional Circuit	Fear / Anxiety Drug and Stress Induced	Fear / Anxiety Escape Circuit	Taken together the 7 brain regions explain 76% of the variation in
NAc(c)-R	0.919				the c-fos levels
NAC(C)-L	0.901				
NAc(S NAc(S Cg2-L Cg1-R Amy-L Se	in we mplex ven b	identi < inter rain re	fy neu relatic egions	irobeh onship of str	As expected Left- and navioral factors that explain the Right- brain regions among the c-fos levels in the Show common variance. essed rats?
Cg1-L		0.687			
PAG-R			0.929		
PAG-L			0.911		
VMH-R				0.872	
VMH-L				0.858	
CumVar %	33.83%	51.01%	63.98%	76.08%	

Scale: Red-Yellow-Green = High to low contribution

Effect of Sex, Trait, Enviro implicated by fear due to anxiety and cognitive control of emotions

	PAG	Amy	Cg1	Cg2	NAc(c)	NAc(sh)	VMH
	NO SIG		V	NO SIG		NO SIG	
		0.682,	0.765,				
Sex		5.371	3.530				
							0.726,
Trait							4.334
					0.776,		
Environment					3.310		
			0.729,				0.796,
Sex*Trait			4.272				2.955
			0.810,				
Sex*Environment			2.704				
Trait*Environment							
Sex*Trait*Environment			Nain of	foct of -			rogion
NOTE: 1 st row=Wilks' Lam	oda; 2 nd row <i>f</i> -	value. Gree	iviain ei	iect of			region
			associat	ted with	n fear/ai	nxiety ar	nd esca
LAn Males showe	~						
than HAn Males;							
of emotions							

Multivariate Radial Basis Function ANN (MRANN)

$$Y_{(Nxp)} = f(X_{(Nxq)}) = W_{(Nxm)}H_{(mxp)} + \varepsilon_{(Nxp)}$$

Where:

- *Y*, *N*, *p*, ε = as stated in MANOVA model
- X = input matrix
- W = weight matrix
- *H* = hidden units matrix
- q = #of inputs (3; 2 levels each)
- *m* = #of hidden units (varies)

Example: PAG Network

MRANN: Importance of Predictors (Normalized)

	PAG	Amy	Cg1	Cg2	NAc(c)	NAc(sh)	VMH
Sex	100.0	100.0	100.0	100.0	84.0	29.3	76.2
Trait	47.9	22.8	63.0	88.4	71.8	100.0	96.4
Environment	96.7	8.6	47.5	99.5	100.0	44.8	100.0

Table 6: RBF Importance of Variables (Normalized)

Primary Contributors in the explanation of variation in c-fos levels are:

- SEX and ENVIRONMENT in regions implicated by:
 - Stimulant drugs and social stress (PAG)
 - Fear / Anxiety (Defensive Emotion) (Amy & VMH)
 - Cognitive control of emotions (Cg1 or Cg2)
 - Fear / Reward (NAc(c))
- > TRAIT in regions implicated by:
 - Fear / reward (NAc(sh))
 - Fear / anxiety (VMH)

The Neural Translational Model

Rat Brain

Human Brain

IFORS-2017:22 / 30

Translational Science

Animal Model		Human Model				
Subject: Rats	≡	Subject: Human				
Trait • HAn • LAn	≡	 Psychological Factors Prone to Hypertension, Anxiety, Panic, Stress, etc. More in control of Emotion 				
Sex • Male • Female	≡	Sex • Male • Female				
Environment Isolated Social 	≡	 Housing / Building Area Outside S Area Inside S 				
Behavior • EPM • LMA	≡	Migration Entryways Courtyards / playgrounds 				
Physiological • BP and Temperature		 Physiological Markers BP, Temperature, Pulse, etc. measured via ECG or PPG 				
Open field novel stress test /w AMPH	Ξ	An anxiety / stress inducing scenario to measure emotional response such as the Stroop Test, Stress Scale Questionnaire, Reaction Time Test, etc.				

Formulating the SIS Index

- The per capita gender-differentiated SIS is calculated as a simple average across the independent factor score vectors obtained from EFA. Factor scores are computed using Thomson (1951) Maximum Validity (or regression) method.
- Thus the formulation of SIS is stated as:

$$SIS_{i,n}^G = \frac{\sum_{j=1}^C f_{i,j}}{C},$$

Where:

- G is the gender indicator
- *f_i* is the score of the *i-th* individual on the factor
- C is the number of factors
- Following this approach, the SIS per capita metric effectively captures emotion and consequentialism in multicriteria decision making
 IFORS-2017: 24 / 30

MCDM & Optimal Prosocial Housing Assignment

- GOAL: Design an equilibrium aware prosocial combinatorial multiple criteria decision-making model (MCDM) to optimize the assignment of public sector apartments.
- We propose a mixed-integer nonlinear goal programming (MINLGP) method of Dash & Kajiji (2014) to solve the multiple objective problem:

 $MINLGP = Min Z = [P_1(h^-, h^+), P_2(h^-, h^+), \dots, P_L(h^-, h^+)]$

 $S.T. \quad Ax + Bf + h^- - h^+ = b$

 $x, f, h^-, h^+ \ge 0$, $f \in \mathbb{Z}^F$, and, $x \in \Re^{l-F}$

Where *k*, the number of goal constraints is such that $A \in \mathfrak{R}^{k,l}$, $B \in \mathcal{Z}^{k,F}$, $b \in \mathfrak{R}^{k}$, and *Z* quantifies the attainment of *L* hierarchical levels such that $P_1(h^-, h^+) > P_2(h^-, h^+) > \ldots \ge P_L(h^-, h^+)$. The specification *b* is the *k*-component vector of goal targets and *h* and *h*⁺ are *k*-component column vectors that capture goal under- and over-achievement, respectively. The optimal solution to the

convex MINLGP is x^* , which satisfies all hierarchical goals as much as possible.

MOAP Constraints

We add the following two goal constraints to establish a multiple objective assignment problem (MOAP).

 $\sum_{i=1}^{n} x_{i,j} + h^{-} - h^{+} = 1 \qquad for \ all \ j = 1, 2, \dots, m$ $\sum_{j=1}^{m} x_{i,j} + h^{-} - h^{+} = 1 \qquad for \ all \ i = 1, 2, \dots, n$

 $x_{i,j} \in \{0,1\} \forall i and j$

Assure maximal coverage for eligible residents by assigning each to an available apartment: Boundary Conditions, specifically x.

Prosocial Housing Assignment Goal Constraints

Prosocial Goal Constraints:

 $\sum_{i \in I} \sum_{j \in m_i} SIS_{i,j} x_{i,j} - h^+ = 0$ $\sum_{i \in I} HAn (x_{i,OS}^{male}) + h^- - h^+ = y_i$ $\sum_{i \in I} HAn (x_{i,IS}^{female}) + h^- - h^+ = y_i$ $\sum_{i \in I} LAn (x_{i,IS}^{male}) + h^- - h^+ = y_i$ $\sum_{i \in I} LAn (x_{i,OS}^{female}) + h^- - h^+ = y_i$ $\sum_{i \in I} AMPH(x_{i,IS}^{male}) + h^- - h^+ = y_i$ $\sum_{i \in I} AMPH(x_{i,IS}^{female}) + h^- - h^+ = y_i$ $\sum_{i \in I} y_i m_{i,IS} \leq m_{IS}$ $\sum_{i \in I} y_i m_{i,OS} \leq m_{OS}$

• $\sum_{i \in I} y_i m_{i,IS} + \sum_{j \in I} y_j m_{j,OS} \le m$

Minimize community wide SIS Assignment HAn males to OS Assignment HAn females to IS

Assign Residents with substance abuse *inside S* Limit on total assigned apartments

MCDM & Optimal Prosocial Housing Assignment

IFORS-2017: 28 / 30

Conclusion & Future Research

- Animal studies indicate that gender differences exist due to anxiety, acute stress, and rearing environments. Their reaction is also tempered by the way they process fear and reward situations.
- The prosocial MOAP specification is capable of incorporating any number of explicit functional relationships such as:
 - To mitigate and control goal deviation in the management of the emotional response to fear among all residents.
 - Because male rodents showed greater evidence of stress when living in social housing, for families where the head of household is male we include a goal to minimize the under-achievement of assigning these families to outside S.
- Future research design now contemplates the use of simulation methods to create a sub-population of eligible residents with levels of anxiety trait who are seeking subsidized housing placement in a hypothetical "SMART" city.
- The housing administrators of this "SMART city" will use MOAP to obtain a prosocial equilibrium assignment.

References (selected)

- https://www.gala-global.org/conference/annual-conference-2017-amsterdam/new-frontier-machine-translationneural-frontier
- Akan, E. 2012. Architecture in Translation: Germany, Turkey, and the Modern House, Duke University Press, Durham, NC.
- Beerya, A. K., & Kauferb, D. (2015). Stress, social behavior, and resilience: Insights from rodents. *Neurobiology of Stress*, 1, 116-127.
- Borck, R. and T. Tabuchi (2016). Pollution and City Size: Can Cities be too Small? CESifo Working Paper Series, No: 6152.
- Christian, J. J. 1961. Phenomena Associated with Population Density. In: Proceedings of the National Academy of Sciences of the United States of America, 1961. 47.4, 428-449.
- Dash Jr., G. H., & Kajiji, N. (2014). On Mulitobjective Combinatorial Optimization and Dynamic Interim Hedging of Efficient Portfolios. International Transactions in Operational Research, DOI: 10.1111/itor.12067.
- Glimcher, P. W. & Fehr, E. 2014. *Neuroeconomics: Decision Making and the Brain,* Elsevier, London, UK.
- Numan, Michael. <u>Neurobiology of Social Behavior</u>, Academic Press, 2015, 358 pages.
- Leurent, F., et al. (2012). "A Disaggregate Residential Equilibrium Assignment Model." <u>Procedia Social and Behavioral Sciences 54</u>: 758-771.
- Ochsner, K.N. & Lieberman, M.D. 2001. The Emergence of Social Cognitive Neuroscience, Amer. Psychologist, 56(9), 717-734.
- Thakral, N. (2016). The Public-Housing Allocation Problem: Theory and Evidence from Pittsburgh. <u>NBER Working Paper.</u> <u>NBER.</u>
- von Wirth, T., et al. (2015). "Mediating Effects Between Objective and Subjective Indicators of Urban Quality of Life: Testing Specific Models for Safety and Access." <u>Social Indicators Research 122(189)</u>.
- Wenstop, F. J. (2005). Mindsets, Rationality and Emotion in Multi-criteria Decision Analysis. Journal of Multi-Criteria Decision Analysis, 13(161-172).

"SMART" Cities: Prosocial Multi Criteria Public Housing Assignment Motivated by Neurobehavioral Simulation

	QUESTIONS???	
	Contact Info:	
Gordon Dash	<u>ghdash@uri.edu</u>	www.ghdash.net
Nina Kajiji	<u>nina@uri.edu</u>	www.ninakajiji.net
S. Tiffany Donaldson	tiffany.donalds	on@umb.edu