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Introduction
Many service industries, such as healthcare, hotel, and airline ticketing, 
share common characteristics:
• (1 ) The capacity is constrained and perishable;
• (2) Bookings are accepted for future use; 
• (3) Customers are allowed to cancel bookings or not show at the time of 

service; 
• (4) The cost of denying service to a customer with booking is relatively 

not too high.
Managers in these businesses accept reservations and subsequently runs 
the risk of cancellations and no-shows.
The strategy of overbooking capacity is commonly practiced.
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Introduction

• Managing overbooking requires a method that gives consideration 
to both managers’ attitude pertaining to the loss due to fine for 
bumped customers and the potential increase in capacity 
utilization.

• Traditional overbooking models are mainly based on the 
assumption that decision makers are rationally loss-neutral.

• There is an increasing body of behavioral evidence for loss-
aversion, indicating that changes for loss loom larger than 
equivalent changes for the gain.
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We theoretically characterized the optimal booking policy in both single-period and 
multi-period settings, and analyzed the prediction differences between loss-neutral 
and loss-averse overbooking models. 
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Model Description

• C :capacity of a service system

• xt :the reservations on hand

• dt :new reservation requests

• 𝑦𝑡 :post-decision reservations on hand.(xt ≤ 𝑦𝑡 ≤ xt + dt)

• 𝑁𝑡 𝑦𝑡 :the number of cancellations, a random variable following a 
Binomial distribution

𝑃𝑦𝑡(𝑛) = 𝑃 𝑁𝑡 𝑦𝑡 = 𝑛 =
𝑦𝑡
𝑛

𝑞𝑡
𝑛(1 − 𝑞𝑡)

𝑦𝑡−𝑧

• 𝑞𝑡 : cancelation probability of a single customer
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Sequence of events in period t
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Model Description

• ft : net revenue in period t

• pt: the fare paid by a customer for reservation in period t

• rt : refund, with rt < pt

𝑓𝑡 𝑥𝑡, 𝑦𝑡 = 𝑦𝑡 − 𝑥𝑡 𝑝𝑡 − 𝑁𝑡 𝑦𝑡 𝑟𝑡 , 𝑓𝑜𝑟 𝑡 = 1,⋯ , 𝑇.

2017/7/20

9



Model Description

• The compensation of denied customers with valid reservations is 
the only loss incurred due to the overbooking.

• Let 𝑥𝑇+1 be the number of customers showing up at the time of 
service. The denied-service cost c(𝑥𝑇+1) is then assumed as an 
increasing convex function of 𝑥𝑇+1, which is given by

𝑐 𝑥𝑇+1 =  
0, 𝑥𝑇+1≤ 𝐶;

ℎ 𝑥𝑇+1 − 𝐶 , 𝑥𝑇+1 > 𝐶.
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Model Description

• We further assume that the manager is loss-averse and has the 
following piecewise-linear loss-aversion utility function u(.)

u 𝑊 =  
𝑊 −𝑊0, 𝑊 ≥ 𝑊0;

λ 𝑊 −𝑊0 ,𝑊 < 𝑊0,

• where 𝑊0 is the manager’s reference wealth at the beginning of the 
planning horizon ; 𝑊 is the manager’s post-decision wealth ; λ (≥ 1) 
is defined as the loss-aversion degree.
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This part considers a single period setting in which the dynamics of new reservation 
requests and customer cancellations over time are absent.
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Single Period Model

• Let y be the post-decision reservations on hand. The manager 
decides on the optimal booking limit y∗ by maximizing the 
expected single-period utility G(.)

𝐺 𝑦 = 𝐸[𝑢(𝑦𝑝 − 𝑁 𝑦 𝑟) − 𝑢(ℎ 𝑦 − 𝑁 𝑦 − 𝐶 +)]
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Single Period Model

Theorem 1:

• (a) G(y) is a concave function in y, hence has an optimal booking 
limit; 

• (b) The optimal booking limit y∗ decreases in loss-aversion 
degree λ;

• (c) The expected monetary payoff with loss-aversion is lower 
than the loss-neutral counterpart.
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Example:
• Suppose C=100, q = 0.49, the overbooking compensation cost for 

each denied customer is $500, the marginal revenue is p = $10, 
and the unit refund is r = $8.

λ=1 (loss-neutral) λ=1.5 (loss-averse) λ=2 (loss-averse)

booking limit y∗ 182 180 178

overbooking pad y∗-C 82 80 78

expected profit 1070 1069 1066

expected utility G(y∗) 1070 1057 1050

service level s1(y
∗) 0.0466 0.0333 0.0232
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Loss-averse managers generally sets low booking limits, and keep better service levels.



This part considers the model of overbooking that accounts for the dynamics of 
arrivals, cancellations , and decision makings over time.
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Model Analysis

• The manager’s objective is to find a policy (y1, . . . , yT ) to 
maximize the total expected utility of the reward stream during 
the whole planning horizon.

• Let 𝑉𝑇+1 𝑥𝑇+1 = 𝑢(−𝑐(𝑥𝑇+1)), and 𝑉𝑡 𝑥𝑡 , 𝑑𝑡 be the maximum 
total expected utility from period t to the service time.

𝑉𝑡 𝑥𝑡, 𝑑𝑡 = max
𝑥𝑡≤𝑦𝑡≤𝑥𝑡+𝑑𝑡

𝐺𝑡 𝑦𝑡 , 𝑥𝑡 , 𝑓𝑜𝑟 𝑡 = 1,⋯ , 𝑇

Where

𝐺𝑡 𝑦𝑡 , 𝑥𝑡 = 𝐸[𝑢 𝑓𝑡 𝑦𝑡, 𝑥𝑡 + 𝑉𝑡+1(𝑦𝑡 − 𝑁𝑡 𝑦𝑡 , 𝐷𝑡+1)]

2017/7/20

17



Model Analysis

Let 𝑦𝑡
∗ 𝑥𝑡, 𝑑𝑡 be the optimal solution with initial reservations on 

hand 𝑥𝑡 and new reservation requests 𝑑𝑡.
𝑦𝑡
∗ 𝑥𝑡 , 𝑑𝑡 = 𝑎𝑟𝑔 max

𝑥𝑡≤𝑦𝑡≤𝑥𝑡+𝑑𝑡

𝐺𝑡 𝑦𝑡, 𝑥𝑡
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Model Analysis

• X = {𝑥𝑡 | 0 ≤ 𝑥𝑡 ≤ 𝑥𝑚𝑎𝑥}

• Y = {𝑦𝑡 | 0 ≤ 𝑦𝑡 ≤ 𝑥𝑚𝑎𝑥 + 𝑑𝑡}

• S =(𝑥𝑡, 𝑦𝑡) | 𝑥𝑡 ∈ X, 𝑦𝑡 ∈ {𝑥𝑡 + 0, . . . , 𝑥𝑡 + 𝑑𝑡}.

• A function g : S → R is supermodular if
𝑔 𝑠′ + 𝑔 𝑠′′ ≤ 𝑔 𝑠′ ∨ s′′ + g s′ ∧ s′′ , for all s′and s′′in S
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Model Analysis

Lemma 1. (Topkis (1998)) 

• If X and Y are lattices, S is a sublattice of X × Y , Sx is the section of S 
at x in X, and g(y, x) is supermodular in (y, x) on S, then argmaxy∈Sx

g(y, x) is increasing in x on {x : x ∈ X, argmaxy∈Sx g(y, x) is nonempty}.

Theorem 1. 

• 𝐺𝑡 𝑦𝑡 , 𝑥𝑡 is supermodular on sublattice S, t = 1, 2, ..., T .

Lemma 2.

• For a given 𝑑𝑡, 𝑦𝑡
∗ 𝑥𝑡 , 𝑑𝑡 is increasing in 𝑥𝑡, t = 1, 2, ..., T .

Assumption 1. 

• For all t = 1, 2, ..., T , rt ≤ pt/2.
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Model Analysis

Theorem 2. 
Under the condition of rt ≤ pt/2,
• (a) 𝑉𝑡 𝑥𝑡 , 𝑑𝑡 is decreasing and concave in 𝑥𝑡 for each given 𝑑𝑡, t 

= 1, 2, ..., T ; 
• (b) For a given 𝑥𝑡, 𝐺𝑡 𝑦𝑡 , 𝑥𝑡 is concave in 𝑦𝑡, t = 1, 2, ..., T ; 
• (c) The optimal booking policy exhibits a state-dependent 

booking limit structure, that is, in each period t, there exists a 
critical value 𝑦𝑡

∗ 𝑥𝑡, 𝑑𝑡 such that it is optimal to continue 
accepting new reservations until the total number of 
reservations on hand reaches 𝑦𝑡

∗ 𝑥𝑡 , 𝑑𝑡 .
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Numerical Examples and Discussions

• p = 10, r = 4,  q = 0.05, T = 20, C = 100, λ = 2, Dt ∼ a modified 
Poisson distribution with mean EDt = 8, upper bound Dt ≤ 50, and 
truncated interval [0, 50]

• The compensation for denied service is described by a quadratic 
function as:

𝑐 𝑥𝑇+1 =  
0, 𝑥𝑇+1≤ 𝐶;

20 ∗ 𝑥𝑇+1 − 𝐶 2, 𝑥𝑇+1 > 𝐶.
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Numerical Examples and Discussions

• As in Figure, all the states at 
which it is optimal to accept 
new reservation requests up 
to a booking limit build a 
boundary. 

• On one side of the boundary, 
it is optimal to accept all the 
new reservation requests. 

• On the other side of the 
boundary it is optimal not to 
accept any new reservation 
request.
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Numerical Examples and Discussions

• The degree of loss-
aversion is allowed to 
vary from 1, 1.5, 2, 2.5 to 
3.

• It can be seen that the 
optimal booking limit 
decreases with the 
degree of loss-aversion.
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• Figures below intend to illustrate the impact of average new reservation 
requests on manager’s optimal decisions.

• Both loss-neutral and loss-averse managers choose to decline some new 
requests down to the booking limit when the reservations on hand level is low 
but EDt is high. 

Numerical Examples and Discussions
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Numerical Examples and Discussions
• The impact of time left until the service time on the optimal booking limit is then 

examined.

As shown in the figure, at the beginning of a planning horizon, both managers are likely to 
seek more revenue through a high booking limit, and then as the time of service approaches, 
they reduce the booking limit to prevent expensive compensatory payments for possible 
denied service.
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Discussions

• To conclude from all these examples, loss-averse preference 
induces managers to behave cautiously compared with loss-
neutral ones. A loss-averse manager prefers a lower booking limit 
than a loss-neutral manager, which is in line with the theoretical 
prediction of the single-period model. Also, a loss-averse manager 
begins to decline new requests earlier than the counterpart.
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Conclusions

• We constructed overbooking models considering the loss-aversion 
behavior.

• We demonstrated that the optimal policy exhibits a booking limit 
structure in both single-period and multi-period settings.

• We further analyzed the prediction biases between loss-neutral and 
loss-averse models.

• The results show that loss-averse managers are cautious by preferring 
lower booking limits and declining new requests earlier than loss-
neutral ones.

• We conclude that loss-aversion behavior limits the application of 
overbooking strategy.
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