

Loss-averse decision analysis in overbooking

2017/7/20

Junlin Chen Department of Management Science, Central University of Finance and Economics, Beijing, 100081, China Email: chenjunlin@cufe.edu.cn

> Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China Xiaobo Zhao, Deng Gao

Contents

1.Introduction

Introduction

Many service industries, such as healthcare, hotel, and airline ticketing, share common characteristics:

Central University

2017/7/20

- (1) The capacity is constrained and perishable;
- (2) Bookings are accepted for future use;
- (3) Customers are allowed to cancel bookings or not show at the time of service;
- (4) The cost of denying service to a customer with booking is relatively not too high.

Managers in these businesses accept reservations and subsequently runs the risk of cancellations and no-shows.

The strategy of overbooking capacity is commonly practiced.

Introduction

- Managing overbooking requires a method that gives consideration to both managers' attitude pertaining to the loss due to fine for bumped customers and the potential increase in capacity utilization.
- Traditional overbooking models are mainly based on the assumption that decision makers are rationally loss-neutral.
- There is an increasing body of behavioral evidence for lossaversion, indicating that changes for loss loom larger than equivalent changes for the gain.

2. Model Description

We theoretically characterized the optimal booking policy in both single-period and multi-period settings, and analyzed the prediction differences between loss-neutral and loss-averse overbooking models.

Model Description

- C :capacity of a service system
- *x_t* :the reservations on hand
- d_t :new reservation requests
- y_t :post-decision reservations on hand. $(x_t \le y_t \le x_t + d_t)$
- $N_t(y_t)$: the number of cancellations, a random variable following a Binomial distribution

$$P_{y_t}(n) = P\{N_t(y_t) = n\} = {\binom{y_t}{n}} q_t^n (1 - q_t)^{y_t - z}$$

• q_t : cancelation probability of a single customer

Sequence of events in period t

Model Description

- f_t : net revenue in period t
- p_t : the fare paid by a customer for reservation in period t
- r_t : refund, with $r_t < p_t$

$$f_t(x_t, y_t) = (y_t - x_t)p_t - N_t(y_t)r_t, \quad for \ t = 1, \cdots, T.$$

Model Description

- The compensation of denied customers with valid reservations is the only loss incurred due to the overbooking.
- Let x_{T+1} be the number of customers showing up at the time of service. The denied-service cost $c(x_{T+1})$ is then assumed as an increasing convex function of x_{T+1} , which is given by

$$c(x_{T+1}) = \begin{cases} 0, & x_{T+1} \le C; \\ h(x_{T+1} - C), & x_{T+1} > C. \end{cases}$$

Model Description

• We further assume that the manager is loss-averse and has the following piecewise-linear loss-aversion utility function *u*(.)

$$u(W) = \begin{cases} W - W_0, & W \ge W_0; \\ \lambda(W - W_0), & W < W_0, \end{cases}$$

• where W_0 is the manager's reference wealth at the beginning of the planning horizon ; W is the manager's post-decision wealth ; $\lambda (\geq 1)$ is defined as the loss-aversion degree.

3. Single Period Model

This part considers a single period setting in which the dynamics of new reservation requests and customer cancellations over time are absent.

Single Period Model

• Let *y* be the post-decision reservations on hand. The manager decides on the optimal booking limit *y*^{*} by maximizing the expected single-period utility *G*(.) $G(y) = E[u(yp - N(y)r) - u(h(y - N(y) - C)^{+})]$

Single Period Model

Theorem 1:

- (a) G(y) is a concave function in y, hence has an optimal booking limit;
- (b) The optimal booking limit y* decreases in loss-aversion degree λ;
- (c) The expected monetary payoff with loss-aversion is lower than the loss-neutral counterpart.

Example:

• Suppose *C*=100, q = 0.49, the overbooking compensation cost for each denied customer is \$500, the marginal revenue is p = \$10, and the unit refund is r = \$8.

Central University

Finance and

conomics

2017/7/20

	λ=1 (loss-neutral)	λ=1.5 (loss-averse)	λ=2 (loss-averse)
booking limit y*	182	180	178
overbooking pad y*-C	82	80	78
expected profit	1070	1069	1066
expected utility G(y*)	1070	1057	1050
service level s ₁ (y [*])	0.0466	0.0333	0.0232

Loss-averse managers generally sets low booking limits, and keep better service levels.

4. MultiPeriod Model

This part considers the model of overbooking that accounts for the dynamics of arrivals, cancellations, and decision makings over time.

Model Analysis

- The manager's objective is to find a policy (y_1, \ldots, y_T) to maximize the total expected utility of the reward stream during the whole planning horizon.
- Let $V_{T+1}(x_{T+1}) = u(-c(x_{T+1}))$, and $V_t(x_t, d_t)$ be the maximum total expected utility from period *t* to the service time. $V_t(x_t, d_t) = \max_{\substack{x_t \leq y_t \leq x_t+d_t}} G_t(y_t, x_t), \quad for t = 1, \cdots, T$

Where

$$G_t(y_t, x_t) = E[u(f_t(y_t, x_t)) + V_{t+1}(y_t - N_t(y_t), D_{t+1})]$$

Model Analysis

Let $y_t^*(x_t, d_t)$ be the optimal solution with initial reservations on hand x_t and new reservation requests d_t .

$$y_t^*(x_t, d_t) = \arg \max_{x_t \le y_t \le x_t + d_t} G_t(y_t, x_t)$$

Model Analysis

- $X = \{x_t \mid 0 \le x_t \le x_{max}\}$
- $Y = \{y_t \mid 0 \le y_t \le x_{max} + d_t\}$
- $S = (x_t, y_t) | x_t \in X, y_t \in \{x_t + 0, ..., x_t + d_t\}.$
- A function $g: S \to R$ is supermodular if $g(s') + g(s'') \le g(s' \lor s'') + g(s' \land s'')$, for all s'and s'' in S

Model Analysis

Lemma 1. (Topkis (1998))

- If X and Y are lattices, S is a sublattice of X × Y, S_x is the section of S at x in X, and g(y, x) is supermodular in (y, x) on S, then argmax_{y∈Sx} g(y, x) is increasing in x on {x : x ∈ X, argmax_{y∈Sx} g(y, x) is nonempty}.
 Theorem 1.
- $G_t(y_t, x_t)$ is supermodular on sublattice S, t = 1, 2, ..., T.

Lemma 2.

- For a given d_t , $y_t^*(x_t, d_t)$ is increasing in x_t , t = 1, 2, ..., T. Assumption 1.
- For all $t = 1, 2, ..., T, r_t \le p_t/2$.

Model Analysis

Theorem 2.

Under the condition of $r_t \le p_t/2$,

- (a) $V_t(x_t, d_t)$ is decreasing and concave in x_t for each given d_t , t = 1, 2, ..., T;
- (b) For a given x_t , $G_t(y_t, x_t)$ is concave in y_t , t = 1, 2, ..., T;
- (c) The optimal booking policy exhibits a state-dependent booking limit structure, that is, in each period t, there exists a critical value y^{*}_t(x_t, d_t) such that it is optimal to continue accepting new reservations until the total number of reservations on hand reaches y^{*}_t(x_t, d_t).

- $p = 10, r = 4, q = 0.05, T = 20, C = 100, \lambda = 2, D_t \sim a \text{ modified}$ Poisson distribution with mean $ED_t = 8$, upper bound $D_t \le 50$, and truncated interval [0, 50]
- The compensation for denied service is described by a quadratic function as:

$$c(x_{T+1}) = \begin{cases} 0, & x_{T+1} \le C; \\ 20 * (x_{T+1} - C)^2, x_{T+1} > C. \end{cases}$$

- As in Figure, all the states at which it is optimal to accept new reservation requests up to a booking limit build a boundary.
- On one side of the boundary, it is optimal to accept all the new reservation requests.
- On the other side of the boundary it is optimal not to accept any new reservation request.

2017/7/20

- The degree of lossaversion is allowed to vary from 1, 1.5, 2, 2.5 to 3.
- It can be seen that the optimal booking limit decreases with the degree of loss-aversion.

2017/7/20

- Figures below intend to illustrate the impact of average new reservation requests on manager's optimal decisions.
- Both loss-neutral and loss-averse managers choose to decline some new requests down to the booking limit when the reservations on hand level is low but *ED*^{*t*} is high.

S

International Federation of Operational Research Societies

• The impact of time left until the service time on the optimal booking limit is then examined.

Central University

of Finance and

Economics

2017/7/20

As shown in the figure, at the beginning of a planning horizon, both managers are likely to seek more revenue through a high booking limit, and then as the time of service approaches, they reduce the booking limit to prevent expensive compensatory payments for possible denied service.

Discussions

• To conclude from all these examples, loss-averse preference induces managers to behave cautiously compared with lossneutral ones. A loss-averse manager prefers a lower booking limit than a loss-neutral manager, which is in line with the theoretical prediction of the single-period model. Also, a loss-averse manager begins to decline new requests earlier than the counterpart.

5. Conclusions

Conclusions

- We constructed overbooking models considering the loss-aversion behavior.
- We demonstrated that the optimal policy exhibits a booking limit structure in both single-period and multi-period settings.
- We further analyzed the prediction biases between loss-neutral and loss-averse models.
- The results show that loss-averse managers are cautious by preferring lower booking limits and declining new requests earlier than loss-neutral ones.
- We conclude that loss-aversion behavior limits the application of overbooking strategy.

THANKS!

2017/7/20

Junlin Chen Department of Management Science, Central University of Finance and Economics, Beijing, 100081, China Email: chenjunlin@cufe.edu.cn

Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China Xiaobo Zhao, Deng Gao