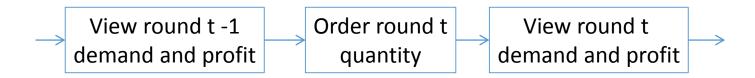


Decision conflict in the newsvendor game

Ilkka Leppänen
Loughborough University
i.leppanen@lboro.ac.uk

Contents


- Background on the newsvendor game
- Decision conflict
- Description of the experiment and results

Newsvendor game

• Workhorse model in operations management, especially in *behavioural operations*

Newsvendor game

- Agent maintains inventory selling a single product
- Orders stock q before demand x is realized
- Stock is worthless after the selling season: both overage and underage incur profit losses
- Normative solution $q^* \neq \underline{x}$
- Usually repeated with a stable demand distribution

Pull to center bias

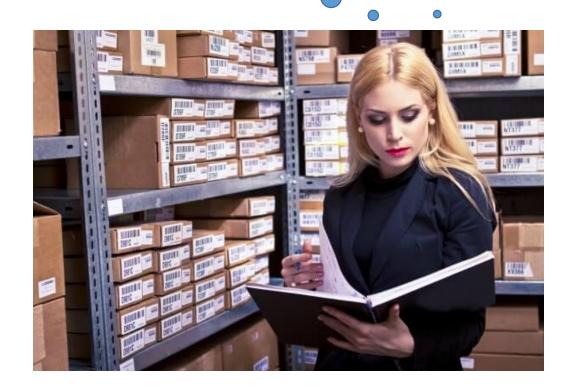
- Subjects choose between q^* and \underline{x}
- Overordering in low margin and underordering in high margin conditions
- Observed in various subject pools (students, managers), incentive mechanisms, etc.
- Repetition decreases the bias but does not completely abolish it

Pull to center bias

(Moritz, Hill, Donohue 2011)

Study		High Margin:	Low Margin:
		% above mean	% below mean
Schweitzer and Cachon (2000)	Study 1	18%	10.60%
	Study 2a	25%	5%
	Study 2b	4%	2.70%
Bostian et al. (2008)	Study 1	32%	22%
	Study 2	22%	12%
Bolton and Katok (2008)	Study 1	22%	12%
Kremer et al. (2010)	Study 1	11%	7%
	Study 2	18%	10%

Pull to center bias: behavioral explanations


- Anchoring on x_{t-1} (Schweitzer and Cachon 2000)
- Preference to minimize ex-post inventory error
 |x q|
- Decision errors (noise) (Su 2008)
- Bounded rationality (Ockenfels and Selten 2014)
- Overconfidence in order variation estimation (Ren and Croson 2013)
- Framing effects (Kremer et al. 2010)

Pecuniary and nonpecuniary motives

- Literature on behavioural economics shows that people care about nonpecuniary motives even without material consequences for selfish decisions (dictator games)
- Newsvendor game is often framed as maintaining inventory in order to satisfy customer demand: both share the damage caused by underage
- Compare to a dictator game where one decides about a resource allocation for oneself and another player who does not have a say on the decision

 $\max_{q} p \min(x, q) - \overline{cq}$

Conjecture

 Decision conflict between pecuniary and nonpecuniary motives determines behaviour in the Newsvendor game

Decision conflict

- Human decision makers overcome decision conflict by cognitive regulation
 - The more there is conflict between the decision alternatives, the higher is the need for cognitive regulation
 - I.e. impulsive and quick decisions are more likely to occur in low-conflict situations
- Evidence accumulation models predict that decision time increases in decision conflict (e.g. Krajbich & Rangel 2011)
- Therefore we can use decision time as a process measure to indicate conflictedness

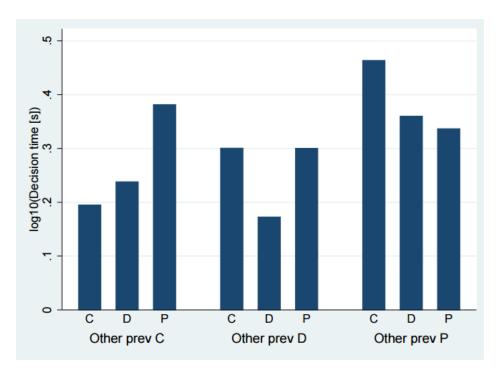
Decision conflict

- The exact definition is context-dependent
- In many decision situations the conflict is between selfish and social motives

- Often associated with cognitive dissonance
 - Inconsistency with behaviours or values
 - E.g. a smoker who knows that smoking is bad but still smokes because he finds it pleasurable

Example: Decision conflict in a social dilemma

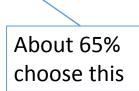
	Cooperate	Defect	Punish
Cooperate	1,1	-2,2	-5 , 1
Defect	2,-2	0,0	-3 , -2
Punish	1,-5	-2 , -3	-5, -5

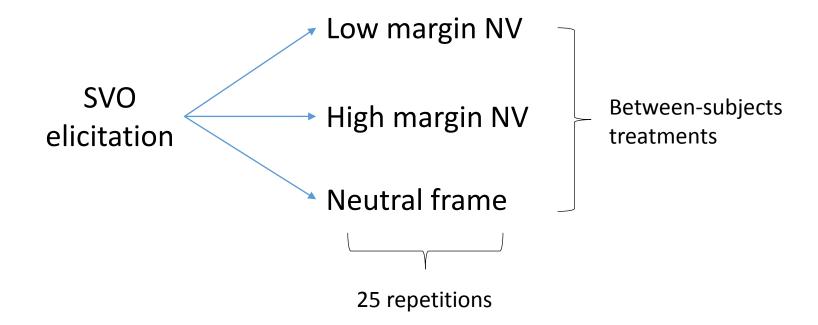

Example: Decision conflict in a social dilemma

- When other (row player) defects,
 - Responding in kind by "Defect" is least conflicted
 - Forgiving and escalating are more conflicted

	Cooperate	Defect	Punish	
Cooperate	1,1	-2,2	-5,1	
Defect	2,-2	0,0	-3,-2	
Punish	1,-5	-2 , -3	-5, -5	

Example: Decision conflict in a social dilemma


- When other (row player) defects,
 - Responding in kind by "Defect" is fastest
 - Forgiving and escalating are more slower


Social value orientation (SVO)

- A continuous measure of social preferences (Murphy et al. 2011)
- 6 dictator game allocations
- Provides information about individual predispositions to value nonpecuniary motives

Option 1	Option 2
85 to me	100 to me
85 to the other	50 to the other

 330 incentivised international participants from Prolific Academic

High margin profit table

Order				Demand			
	300	400	500	600	700	800	900
	1/7	1/7	1/7	1/7	1/7	1/7	1/7
300	420	420	420	420	420	420	420
400	382	560	560	560	560	560	560
500	344	522	700	700	700	700	700
600	306	484	662	840	840	840	840
700	268	446	624	802	980	980	980
800	230	408	586	764	942	1120	1120
900	192	370	548	726	904	1082	1260

Low margin profit table

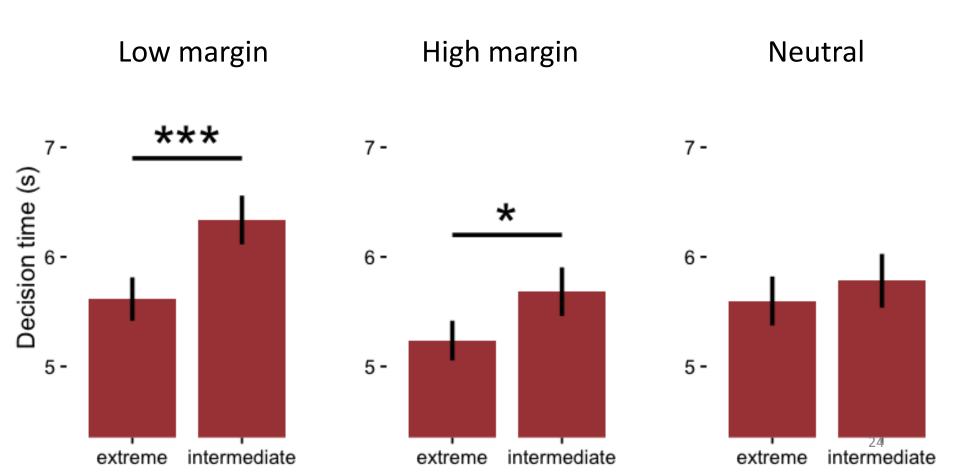
Order				Demand			
	500	550	600	650	700	750	800
	1/7	1/7	1/7	1/7	1/7	1/7	1/7
500	780	780	780	780	780	780	780
550	494	858	858	858	858	858	858
600	208	572	936	936	936	936	936
650	-78	286	650	1014	1014	1014	1014
700	-364	0	364	728	1092	1092	1092
750	-650	-286	78	442	806	1170	1170
800	-936	-572	-208	156	520	884	1248

Neutral framing profit table

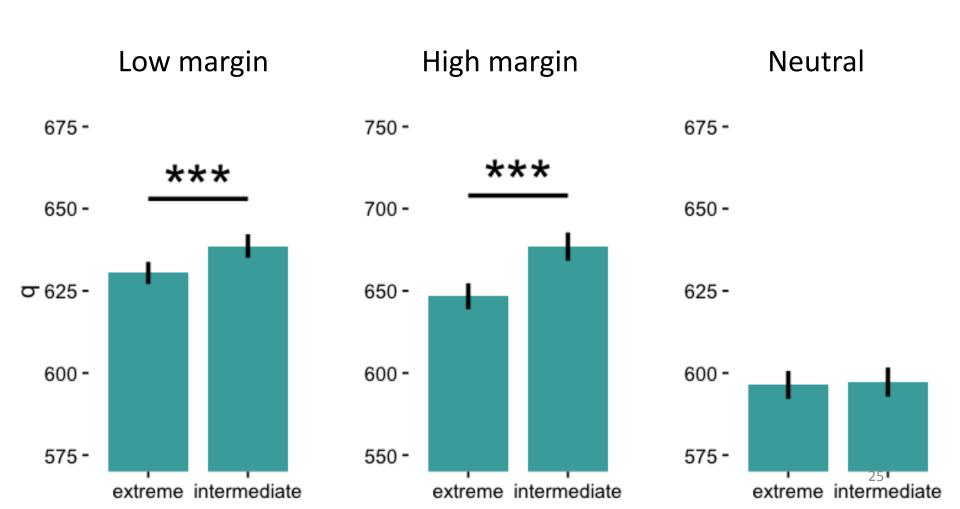
Decision	State of the world						
	S1	S2	S3	S4	S5	S6	S7
	1/7	1/7	1/7	1/7	1/7	1/7	1/7
Α	780	780	780	780	780	780	780
В	494	858	858	858	858	858	858
С	208	572	936	936	936	936	936
D	-78	286	650	1014	1014	1014	1014
E	-364	0	364	728	1092	1092	1092
F	-650	-286	78	442	806	1170	1170
G	-936	-572	-208	156	520	884	1248

Hypotheses

- Intermediate situation: neither demand is satisfied nor order quantity is at the normative level
- Extreme situation: either demand is satisfied or order quantity is at the normative level


- H1: Extreme and intermediate situations in round t-1 lead to different decision times in round t
- H2: Intermediate situations in round t-1 lead to higher quantity in round t than extreme situations

Results


- Pull-to-center pattern is replicated
- Demand anchoring: q_t depends on x_{t-1} in low and high treatments but not in neutral treatment
- In 11.3% of rounds subjects choose q* in low margin and in 16.4% in high margin as opposed to 25% in the neutral treatment
- SVO does not directly affect order quantity

	Mean q (SD)		Mean profit	q*	<u>X</u>
Low	633.25	(66.25)	613.08	550	650
High	655.81	(147.96)	631.13	800	600
Neutral	596.74	(68.51)	686.87	550	650

Results: H1 is supported

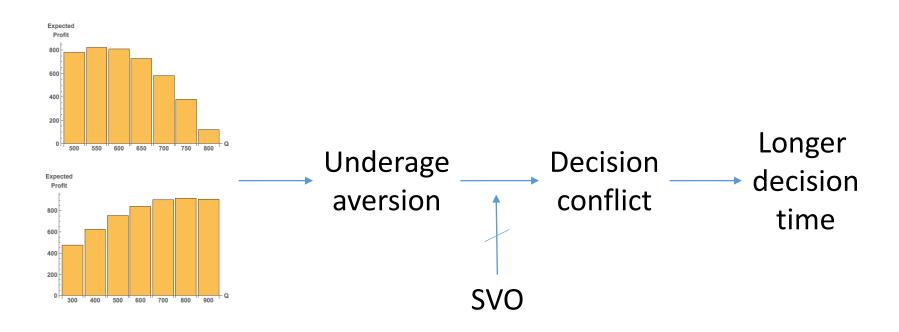
Results: H2 is supported

Another source of conflict?

- Conflict may arise not only from extreme/intermediate situations but also when choosing q* (effective only in low treatment)
- Logit regression shows that probability of choosing q* in round t is not affected by decision time

	Low	High	Neutral	
	Estimate (SEM)	Estimate (SEM)	Estimate (SEM)	
Intercept	-2.42 (0.13) ***	-1.86 (0.12) ***	-1.5 (0.18) ***	
Decision time	0.0021 (0.012)	-0.022 (0.014)	-0.011 (0.01)	
SVO	-0.0031 (0.01)	0.0061 (0.0084)	0.013 (0.014)	
Decision time x SVO	0.00082 (0.00097)	0.0024 (0.00092) **	-0.00026 (0.00077)	

(Dependent variable: whether q=q* or not)


Profits wrt. decision time

- In low margin profit decreases in decision time
- In high margin profit increases in decision time
- Neutral framing: no dependence

	Low	High	Neutral	
	Estimate (SEM)	Estimate (SEM)	Estimate (SEM)	
Intercept	606.29 (9.83) ***	629.88 (4.45) ***	680.16 (8.94) ***	
Decision time	-6.05 (1.79) ***	3.56 (0.87) ***	-0.96 (1.02)	
SVO	0.18 (0.75)	0.085 (0.32)	1.19 (0.66)	
Decision time x SVO	0.19 (0.13)	-0.09 (0.058)	0.09 (0.079)	

(Dependent variable: profit)

Conclusions

- Krajbich, I. and Rangel, A., 2011. Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in valuebased decisions. PNAS 108(33), pp. 13852-57.
- Kremer, M., Minner, S. and Van Wassenhove, L.N., 2010. Do random errors explain newsvendor behavior? Manufacturing & Service Operations Management, 12(4), pp. 673-681.
- Murphy, R.O., Ackermann, K.A. and Handgraaf, M., 2011. Measuring social value orientation. Judgment and Decision Making, 6(8), pp. 771-781.
- Ockenfels, A. and Selten, R., 2014. Impulse balance in the newsvendor game. Games and Economic Behavior, 86, pp. 237-247.
- Ren, Y. and Croson, R., 2013. Overconfidence in newsvendor orders: An experimental study. Management Science, 59(11), pp. 2502-2517.
- Schweitzer, M.E. and Cachon, G.P., 2000. Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence. Management Science, 46(3), pp. 404-420.
- Su, X., 2008. Bounded rationality in newsvendor models. Manufacturing & Service Operations Management, 10(4), pp. 566-589.